磁性材料可分为软磁性材料如铁和硬 磁性材料 如钢。
磁现象的本质 其实就是核外的电子作绕核运动时,形成了环绕原子核的电流圈,这个电流圈产生了磁场,原子就具有了磁性。组成物质的每个原子都是一个小磁体。一般的物体内部无数个相当于小磁体的原子的排列是杂乱无章的,它们的磁性都互相抵消了,所以整个物体不具有磁性。当物体内部的小磁体(原子)的n、s极首尾相接整齐排列时,物体的两端就形成了n极和s极。就具有了磁性。物体磁化的过程就是使物质内部的原子按一定方向排列的过程。
一些物体在磁体或电流的作用下会获得磁性,这种现象叫做磁化。许多物质容易磁化。机械表磁化后,走时不准;彩电显像管磁化后,色彩失真,等等。信用卡,银行卡也带有磁性。
如果磁是电磁以太涡旋,一个磁铁,没看到任何电磁以太的涡旋,为什么会有磁性?我们的回答是:物质的磁性起源于原子中电子的运动,电子的运动会产生一个电磁以太的涡旋。
早在1820年。丹麦科学家奥斯特就发现了电流的磁效应,第一次揭示了磁与电存在着联系,从而把电学和磁学联系起来。
为了解释永磁和磁化现象,安培提出了分子电流假说。安培认为。任何物质的分子中都存在着环形电流,称为分子电流,而分子电流相当一个基元磁体。当物质在宏观上不存在磁性时,这些分子电流做的取向是无规则的,它们对外界所产生的磁效应互相抵消,故使整个物体不显磁性。在外磁场作用下。等效于基元磁体的各个分子电流将倾向于沿外磁场方向取向,而使物体显示磁性。
磁现象和电现象有本质的联系。物质的磁性和电子的运动结构有着密切的关系。乌伦贝克与哥德斯密特最先提出的电子自旋概念,是把电子看成一个带电的小球,他们认为,与行星绕太阳的运动相似,电子一方面绕原子核运转,相应有轨道角动量和轨道磁矩,另一方面又绕本身轴线自转,具有自旋角动量和相应的自旋磁矩。施特恩-盖拉赫从银原子射线实验中所测得的磁矩正是这自旋磁矩。(人们认为把电子自旋看成是小球绕本身轴线的转动是不正确的)
电子绕原子核作圆轨道运转和绕本身的自旋运动都会产生电磁以太的涡旋而形成磁性,人们常用磁矩来描述磁性。因此电子具有磁矩,电子磁矩由电子的轨道磁矩和自旋磁矩组成。在晶体中,电子的轨道磁矩受晶格的作用,其方向是变化的,不能形成一个联合磁矩,对外没有磁性作用。因此,物质的磁性不是由电子的轨道磁矩引起,而是主要由自旋磁矩引起。每个电子自旋磁矩的近似值等于一个波尔磁子。 是原子磁矩的单位, 。因为原子核比电子重2000倍左右。其运动速度仅为电子速度的几千分之一,故原子核的磁矩仅为电子的千分之几,可以忽略不计。
孤立原子的磁矩决定于原子的结构。原子中如果有未被填满的电子壳层,其电子的自旋磁矩未被抵消。原子就具有‘永久磁矩‘。例如,铁原子的原子序数为26,共有26个电子,在5个轨道中除了有一条轨道必须填入2个电子(自旋反平行)外,其余4个轨道均只有一个电子。且这些电子的自旋方向平行,由此总的电子自旋磁矩为4 。
磁性分类折叠编辑本段
抗磁性折叠
当磁化强度、au等元素具有这种性质。在外磁场中,这类磁化了的介质内部的磁感应强度小于真空中的磁感应强度m。抗磁性物质的原子(离子)的磁矩应为零,即不存在永久磁矩。当抗磁性物质放入外磁场中,外磁场使电子轨道改变,感生一个与外磁场方向相反的磁矩,表现为抗磁性。所以抗磁性来源于原子中电子轨道状态的变化。抗磁性物质的抗磁性一般很微弱,磁化率h一般约为-10-5,为负值。
顺磁性折叠
顺磁性物质的主要特征是。不论外加磁场是否存在,原子内部存在永久磁矩。但在无外加磁场时,由于顺磁物质的原子做无规则的热振动,宏观看来,没有磁性;在外加磁场作用下,每个原子磁矩比较规则地取向,物质显示极弱的磁性。磁化强度与外磁场方向一致,
为正,而且严格地与外磁场h成正比。
顺磁性物质的磁性除了与h有关外,还依赖于温度。其磁化率成反比。
式中,c称为居里常数。取决于顺磁物质的磁化强度和磁矩大小。
顺磁性物质的磁化率一般也很小,室温下h约为10-5。一般含有奇数个电子的原子或分子,电子未填满壳层的原子或离子,如过渡元素、稀土元素、钢系元素。还有铝铂等元素,都属于顺磁物质。
铁磁性折叠
对诸如fe、co、ni等物质,在室温下磁化率可达10-3数量级,称这类物质的磁性为铁磁性。
铁磁性物质即使在较弱的磁场内,也可得到极高的磁化强度,而且当外磁场移去后。仍可保留极强的磁性。其磁化率为正值,但当外场增大时,由于磁化强度迅速达到饱和,其h变小。
铁磁性物质具有很强的磁性,主要起因于它们具有很强的内部交换场。铁磁物质的交换能为正值,而且较大,使得相邻原子的磁矩平行取向(相应于稳定状态),